Theorem

Theorem

Let Ω be discrete probability space, and let A, B be events. Then:

- \bullet $\mathbb{P}(A) \geq 0$;
- $\bullet A \subseteq B \implies \mathbb{P}(A) \leq \mathbb{P}(B);$
- If $A \cap B = \emptyset$, then

$$\mathbb{P}(A \cup B) = \mathbb{P}(A) + \mathbb{P}(B).$$

Proof.

We have

$$\mathbb{P}(A) = \sum_{\omega \in A} p(\omega) \ge 0. \tag{1}$$

We have

$$\mathbb{P}(\Omega) = \sum_{\omega \in \Omega} p(\omega),$$

and this sum is 1 by definition.