Theorem

$$\binom{n+1}{k} = \binom{n}{k} + \binom{n}{k-1}$$

Another proof.

• Let
$$|A| = n$$
, and let $B = A \cup \{\star\}$.

- Let $C \subseteq B$, |C| = k. Then either $\star \in C$ or $\star \notin C$.
- If $\star \notin C$, then C is a subset of A of size k;
- If $\star \in C$, then C is a subset of A of size (k-1) plus \star ;
- There are $\binom{n}{k}$ options in case 1 and $\binom{n}{k-1}$ options in case 2.