Theorem

If p is prime, then

$$a^p \equiv a \pmod{p}$$
.

Proof.

We will prove by induction. First note that if a = 0 then $0^{p} = 0$ and if a = 1 then $1^{p} = 1$.

Now assume the theorem is true for a. We compute

 $(a+1)^p \equiv a^p + 1^p \pmod{p} = a+1 \pmod{p},$

the first step using Lemma 2, and the second using the induction hypothesis.