Proof of part 1.

Let \sim be an equivalence relation on X, and consider the collection

$$\{[x]:x\in X\}.$$

We need to show two things:

- U_{x∈X}[x] = X (but this follows since x ∈ [x]);
 For any x, y ∈ X, either [x] = [y], or [x] ∩ [y] = Ø.
 Assume [x] ∩ [y] ≠ Ø. Take z ∈ [x] ∩ [y].
 Then z ~ x ∧ z ~ y
 - By symmetry and transitivity, $x \sim y$
 - By lemma, [x] = [y].