Theorem

Let X be any set.

- If ∼ is an equivalence relation on X, the equivalence classes of ∼ form a partition of X.
- **3** Let $\{A_n : n \in I\}$ be a partition of X. Define a relation \mathcal{R} on X where

$$x\mathcal{R}y \iff \exists n \in I, x \in A_n \land y \in A_n.$$

Then \mathcal{R} is an equivalence relation.

Basically we have this one-to-one correspondence:

 $\{\text{partitions}\} \leftrightarrow \{\text{equivalence relations}\}.$

(□) (圖) (필) (필) (필) (3/10)