- $A = \mathbb{R}$, we say $x \mathcal{R} y \iff x^2 = y^2$
 - reflexive: $x^2 = x^2$
 - symmetric: if $x^2 = y^2$, then $y^2 = x^2$;
 - transitive: if $x^2 = y^2$ and $y^2 = z^2$, then $x^2 = z^2$.

• $A = \mathbb{R}$, where $x \mathcal{R} y \iff |y - x| \le 1$.

- reflexive: |x − x| = 0 < 1;
- symmetric: Since |x y| = |y x|, if $|y x| \le 1$ then $|x y| \le 1$;
- transitive: Now assume that $x \sim y$ and $y \sim z$. Then we have

$$|x-z| = |(x-y) + (y-z)| \le |x-y| + |y-z| \le 1+1=2,$$

and this suggests that it is not transitive. In fact, if we choose

$$x=0, \quad y=1, \quad z=2,$$

then

$$x \sim y, \quad y \sim z, \quad x \not\sim z.$$
 (1)

Not an equivalence relation!!