Examples 2

- Let A be the set of all humans, and we say x[†] if x and y were born in the same calendar year.
 - reflexive: everyone is born in the same year as themselves;
 - symmetric: if x and y were born in the same year, then y and x were born in the same year;
 - transitive: if x and y were born in the same year, and y and z were born in the same year, then x and z were born in the same year;
- Let $A = \mathbb{R}$ and let $\mathcal{R} = \leq$, i.e. $(x, y) \in \mathcal{R} \iff x \leq y$.
 - reflexive: $x \leq x$ for all $x \in \mathbb{Z}$;
 - symmetric: Assume that $x \le y$. Does this imply that $y \le x$? NO. For example, $2 \le 3$ but $3 \le 2$.

Therefore, not an equivalence relation.

• transitive: It does happen to be transitive:

$$x \leq y \wedge y \leq z \implies x \leq z,$$

but since it's not symmetric it is not an equivalence relation.