Checking condition 2

- **a** Assume that if $(y, z_1) \in f^*$ and $(y, z_2) \in f^*$, then $z_1 = z_2$.
- As argued before, this means that y = f(x) for some x.
- Say $x_1, x_2 \in A$ with $f(x_1) = f(x_2) = y$.
- Then $(y, x_1) \in f^*$ and $(y, x_2) \in f^*$.
- For f^* to be a function, this requires that $x_1 = x_2$, but we have shown that $f(x_1) = f(x_2) \implies x_1 = x_2$, which is the definition of injective.

Therefore

$$f^*$$
 is a function $\implies f$ is injective.

(ロ) (日) (日) (日) (日) (日) (10/11)