Proof for Union.

• Let *x* > 0.

• Then there exists integers larger than x, so the set

$$S = \{q \in \mathbb{N} : q > x\} \neq \emptyset.$$

- By Well-ordering, S has a least element. Call it r.
- Since $r \in S$, r > x, and since $r 1 \notin S$, $r 1 \ge x$, so we have

$$r-1 \leq x < r \implies x \in A_r.$$

- Now let x < 0.
 - If x is integer, say x = -n, then $x \in A_{-n}$.
 - If x is not an integer, then -x > 0 and thus $-x \in A_{r-1}$ as above, or

$$r - 1 \leq -x < r,$$

and since x not integer,

$$r-1 < -x < r \implies -r < x < -r+1 \implies x \in A_{-r}.$$