- Let $A_n = [0, 1/n) = \{x \in \mathbb{R} : 0 \le x < 1/n\}$ for all $n \in \mathbb{N}$.
- Note that if m > n, then $A_m \subsetneq A_n$. (The collection is **decreasing**.)
- We see that

$$\bigcup_{i\in\mathbb{N}}A_i=A_1=[0,1).$$

• Why?

• Since
$$A_k \subseteq A_1$$
 for all $k \in \mathbb{N}$

- if $x \in \bigcup_{i \in \mathbb{N}} A_i$ then $x \in A_k$ for some k and thus $x \in A_1$.
- Now we consider

$$\bigcap_{i\in\mathbb{N}}A_i.$$

Then

$$x \in \bigcap_{i \in \mathbb{N}} A_i \iff 0 \le x < 1/i \quad \forall i \in \mathbb{N}.$$

(ロ) (同) (目) (目) (目) (0) (0) 5/12