We want to show

$$\bigcup_{F \in C_0(\mathbb{R})} A_f = \mathbb{R}$$

- Let $z \in \mathbb{R}$, we want to show that $z \in A_f$ for some $f \in C_0(\mathbb{R})$, or
- for any $z \in \mathbb{R}$, there is $f \in C_0(\mathbb{R})$ with f(z) = 0.
- Pick f(x) = x(x-z).
- We want to show

$$\bigcap_{f\in C_0(\mathbb{R})} A_f = \{0\}.$$

- Since f(0) = 0 for all $f \in C_0(\mathbb{R})$, we have $\{0\} \in A_f$ for all f.
- Now let $z \neq 0$.
- Note that g(x) = x is in $C_0(\mathbb{R})$, but if $z \neq 0$, then $g(z) \neq 0$.
- Therefore $z \notin A_g$ and $z \notin \bigcap_{f \in C_0(\mathbb{R})} A_f = \{0\}$.