Induction.

- n = 1: If $A = \{x\}$, then $\mathcal{P}(A)$ has two elements: \emptyset and $\{x\}$.
- Now assume theorem true for all sets of size k, and let D be a set of size k + 1:

$$D = \{d_1, d_2, \ldots, d_{k+1}\}.$$

- Let $A = D \setminus \{d_{k+1}\} = \{d_1, d_2, \dots, d_k\}$, and so |A| = k.
- By induction hypothesis, $|\mathcal{P}(A)| = 2^k$.
- Note that any subset of A gives rise to two subsets of D:

$$A, \quad A \cup \{d_{k+1}\}.$$

Therefore

$$|\mathcal{P}(D)| = 2 |\mathcal{P}(A)| = 2 \cdot 2^{k} = 2^{k+1}.$$

(□) (圖) (필) (필) (필) (9/10