Theorem

For all $n \in \mathbb{N}$, n can be written as a sum of distinct powers of 2, i.e.

$$n = 2^{r_1} + 2^{r_2} + \dots + 2^{r_q},$$

with the r_i all different.

Proof.

- n = 1: $1 = 2^{0}$. Check.
- Fix k and assume true for all numbers up to and including k.
- Consider k + 1. Let ℓ be maximal so that $2^{\ell} \leq k + 1$.
- Define $m = k + 1 2^{\ell}$. Since $2^{\ell} > 0$, $m \le n$.
- By assumption,

$$m = 2^{r_1} + 2^{r_2} + \cdots + 2^{r_q}.$$

So

$$n = 2^{\ell} + 2^{r_1} + 2^{r_2} + \dots + 2^{r_q}$$

• But what if $\ell = r_j$ for some j? Then $m \ge 2^{\ell}$, and $k + 1 = m + 2^{\ell} \ge 2^{\ell+1}$. This contradicts maximality of ℓ .

<ロ> (四) (四) (三) (三) (三) (10/10)