$$\forall n \in \mathbb{N}, \quad G_n < (a+b)^n.$$

Proof.

- We use strong induction. First note that if $a, b \ge 1$ then $(a + b) \ge 2$.
- Let us first use base cases: n = 1 and n = 2.
- n = 1: $G_1 = 1 < 2 \le (a + b)^1$.
- n = 2: $F_2 = 1 < 4 \le (a + b)^2$.
- Now fix k and assume that theorem holds for all $j \leq k$.
- Then

$$egin{aligned} G_{k+1} &= G_k + G_{k-1} \ &< (a+b)^k + (a+b)^{k-1} \ &< (a+b)^k + (a+b)^k \ &= 2 \cdot (a+b)^k \leq (a+b)^{k+1} \end{aligned}$$