$\forall n \in \mathbb{N}, \quad F_n < 2^n.$

Proof.

- We use strong induction.
- Let us first use base cases: n = 1 and n = 2.
- n = 1: $F_1 = 1 < 2^1$.
- n = 2: $F_2 = 1 < 2^2$.
- Now fix k and assume that theorem holds for all $j \leq k$.
- Then

$$F_{k+1} = F_k + F_{k-1}$$

< 2^k + 2^{k-1}
< 2^k + 2^k
= 2 \cdot 2^k = 2^{k+2}

<ロ> < 回> < 回> < E> < E> E のQで 6/10