One more example:

$$S_n = 1 + 2 + 4 + 8 + 16 + \dots + 2^n = \sum_{i=0}^n 2^i$$
.

• We compute a few:

$$S_1 = 1$$
, $S_2 = 3$, $S_3 = 7$, $S_4 = 15$,...

so a reasonable guess is

$$S_n=2^{n+1}-1.$$

Note

$$S_{n+1} = S_n + 2^{n+1}$$

- Check: $S_1 = 1 + 2 = 3$, and $2^2 1 = 4 1 = 3$.
- Now assume $S_k = 2^{k+1} 1$, then:

$$S_{k+1} = S_k + 2^{k+1} = 2^{k+1} - 1 + 2^{k+1}$$

= $2 \cdot 2^{k+1} - 1 = 2^{k+2} - 1$.