Theorem

- Let $f: A \to B$ and $g: B \to C$.
 - **1** If f, g are both injective, then $g \circ f$ is also injective.
 - **2** If f, g are both surjective, then $g \circ f$ is also surjective.
 - **3** If f, g are both bijective, then $g \circ f$ is also bijective.

Proof.

Let x₁, x₂ ∈ A with x₁ ≠ x₂. Then f(x₁) ≠ f(x₂) since f injective. Then g(f(x₁)) ≠ g(f(x₂)) since g injective.
Let z ∈ C. There exists y ∈ B with g(y) = z since g surjective. There exists x ∈ A with f(x) = y since f surjective. So therefore g(f(x)) = z.
Dut 1 and 2 to path and

Put 1 and 2 together!