• **Conjecture**: $n^2 + n$ is always even

•	n	1	2	3	4	5	6	7	8	9	10
	$n^{2} + n$	2	6	12	20	30	42	56	72	90	110

< □ ▶ < @ ▶ < ≧ ▶ < ≧ ▶ ≧ り へ ⊙ 6/9

• Sure seems to always be even... is this a proof??

Proof:

$$1 n^2 + n = (n+1)n.$$

- 2 n, n+1 are two consecutive numbers.
- Therefore one is even and one is odd.
- Fact: odd * even = even.