Lecture 7, class activity. Modular Arithmetic.

1. Show that $n \equiv 2 \pmod{6} \implies n \equiv 2 \pmod{3}$.

2. Show that the converse of this statement is false.

3. Can you generalize this into a conjecture?

4. Fill out the following table:

	n = 1	n = 2	n = 3	n = 4	n = 5
$2^n \pmod{10}$					
$3^n \pmod{10}$					
$4^n \pmod{10}$					
$5^n \pmod{10}$					
$6^n \pmod{10}$					
$7^n \pmod{10}$					
$8^n \pmod{10}$					
$9^n \pmod{10}$					

Hint: You can just compute everything, but if you think a bit about what you're doing, you can save a lot of time in many of these computations....