Lecture 6, class activity, Remainders

1. Fill out each of the following tables, noting that the first table is for + and the second for $\times:$

+	even	odd	×	even	odd
even			even		
odd			odd		

2. Fill out each of the following tables, where we are writing **the remainder modulo 2**:

+	0	1	×	0	1
0			0		
1			1		

- 3. Let $n = 2k + r_1$ and $m = 2l + r_2$. Show that the remainder of n + m is $r_1 + r_2$. What does this have to do with the previous two tables?
- 4. Compute all of the numbers asked for below. Describe the pattern that you see.

	n = 1	n = 2	n = 3	n = 4	n = 5
2^n					
$2^n \pmod{5}$					
7^n					
$7^n \pmod{5}$					
$(-3)^n$					
$(-3)^n \pmod{5}$					