Lecture 3, class activity

We have talked about proof by exhaustion, or proof by cases, before. The logical justification for this rule is

$$(P_1 \vee P_2 \vee \cdots \vee P_n) \implies Q$$
 is equiv. to $(P_1 \implies Q) \wedge (P_2 \implies Q) \wedge \cdots \wedge (P_n \implies Q)$.

When n=2, this becomes

$$(P_1 \vee P_2) \implies Q \text{ is equiv. to } (P_1 \implies Q) \wedge (P_2 \implies Q).$$
 (1)

Let us prove this last one with a truth table!

P_1	P_2	Q	$P_1 \implies Q$	$P_2 \implies Q$	$P_1 \vee P_2$	$(P_1 \vee P_2) \implies Q$
\overline{T}	T	T				
\overline{T}	T	F				
\overline{T}	F	T				
\overline{T}	F	F				
\overline{F}	T	T				
\overline{F}	T	F				
\overline{F}	F	T				
F	F	F				

1. Verify that the last column is the AND of the first two columns that you've filled in.

2. Translate the meaning of (1) into words.