Some logic and some sets

We are going to prove the distributive law

$$(P \land Q) \lor R \iff (P \lor R) \land (Q \lor R)$$

1. One way is with truth tables:

P	Q	R	$P \wedge Q$	$ (P \land Q) \lor R$	$P \vee R$	$Q \lor R$	$(P \lor R) \land (Q \lor R)$
T	T	T					
T	T	F					
T	F	T					
Т	F	F					
F	T	T					
F	T	F					
F	F	T					
F	F	F					

2. Another way is with Venn diagrams. Fill in:

Convince yourself from these pictures that

 $(P \cap Q) \cup R = (P \cup R) \cap (Q \cup R)$