The Substitution Rule If u = g(x) is a differentiable function whose range is an interval I and f is continuous on I, then

$$\int f'(g(x)) \cdot g'(x) \, dx = \int f(u) \, du$$

<u>Caution</u> Note that after the substitution you have NO x's left inside the integral. The new variable on the right hand side is "u".

Example Find $\int x^3 \cos(x^4 + 2) dx$

Here the "inner" function is $x^4 + 2$ that will be our u, i.e. $u = x^4 + 2$. Then find the differential of u: $du = 4x^3 dx$. Since you only have $x^3 dx$ in your integral, divide both sides of the differential by 4 to get what you exactly need to replace $x^3 dx$ with.

$$\int x^3 \cos(x^4 + 2) \, dx = \int \cos(x^4 + 2) x^3 \, dx$$
$$= \int \cos u \cdot \frac{1}{4} \, du$$
$$= \frac{1}{4} \int \cos u \, du$$
$$= \frac{1}{4} \sin u + C(\text{ go back to your original variable })$$
$$= \frac{1}{4} \sin(x^4 + 2) + C$$

Example Calculate $\int e^{5x} dx$

The "inner" function here is 5x it is inside the exponential function after all. So u = 5x, differential du = 5 dx. Divide both sides by 5 since you only need dx so $\frac{1}{5}du = dx$.

$$\int e^{5x} dx = \int e^u (\frac{1}{5} du)$$

= $\frac{1}{5} \int e^u du$
= $\frac{1}{5} e^u + C$ (go back to your original variable)
= $\frac{1}{5} e^{5x} + C$