Example Show that $\int_{a}^{b} k \, dx = k(b-a)$ for any constant k.

We will use the same Δx as before i.e $\Delta x = \frac{b-a}{n}$ and the right hand endpoint of each subinterval as $c_i^{\star} = c_i$

$$\sum_{i=1}^{n} f(c_i^*) \Delta x = \sum_{i=1}^{n} k \cdot \frac{b-a}{n}$$
$$= k \frac{b-a}{n} \cdot n = k(b-a) \to k(b-a) \text{ as } n \to \infty$$

Example Show that $\int_{a}^{b} x^{2} dx = \frac{b^{3} - a^{3}}{3}$

This is left as an exercise for you to prove.

Cautionary Example Let $f(x) = \begin{cases} A & \text{if } a \le x \le c \\ B & \text{if } c < x \le b \end{cases}$ where A < B. Does $\int_{a}^{b} f(x) dx$ exists?

Note that f is discontinuous at x = c. So our theorem does not promise us any result. But looking at the graph of f below we see that $\int_a^b f(x) dx$ exits and $\int_a^b f(x) dx = A_1 + A_2 = A(c-a) + B(b-c)$

Next we will talk about a little what does "negative area" mean?

If f takes both positive and negative values as in the figure below, then the Riemann Sum is the sum of the area of the rectangles that lie above the x-axis, and the *negatives* of the areas of the rectangles that lie below the x-axis.