Example A rocket is launched vertically upward from a point 2 miles west of an observer on the ground. What is the speed of the rocket when the angle of elevation of the observer's line of sight to the rocket is 50° and is increasing at 5° per second?

If possible, always start with a graph or picture like the one below:

In the figure above the base b represents the distance of the observer to the rocket's launch pad and it is equal to 2. "h" represents the distance of the rocket to the ground and θ represent the angle of elevation of the observer's line of sight. Both h and θ are increasing in time. We are also given $\frac{d\theta}{dt} = 5^{\circ}$ per second. We are asked to find the speed of the rocket when $\theta = 50^{\circ}$. Speed is defined as the rate of change in distance of the rocket to the ground with respect to time i.e we are looking for $\frac{dh}{dt}$ when $\theta = 50^{\circ}$. To find this we need an equation that relates h to the other variable θ and the base b = 2. This equation we will gather using the geometry. In the given figure above we have a right angular triangle hence we will use the trigonometry to connect h to others as follows

$$\tan \theta = \frac{h}{2}$$

Now we will implicitly differentiate both sides of this equation with respect to time. Note that both variables h and θ on both sides change with respect to time. This means when you do the differentiation expect $\frac{dh}{dt}$ and $\frac{d\theta}{dt}$ to pop-up every time you are differentiating an h or θ term.

$$\sec^2 \theta \frac{d\theta}{dt} = \frac{1}{2} \frac{dh}{dt} \Rightarrow \frac{dh}{dt} = 2 \sec^2 \theta \frac{d\theta}{dt}$$

Warning: Calculus requires that all angles be in radians.

$$\frac{dh}{dt} = 2\sec^2(50^\circ \cdot \frac{\pi}{180})[5^\circ \cdot \frac{\pi}{180}] \approx 0.422mi/sec \approx 1520.7mi/hr$$