Example Sketch the graph of $f(x) = \frac{x^2}{\sqrt{x+1}}$

Domain | f(x) is not defined when $\sqrt{x+1} \leq 0$. So we want $x+1 > 0 \Rightarrow$ $\overline{x > -1}$ which implies Domain of $f=(-1,\infty)$

 $\boxed{Intercepts} \text{ y-intercept: } \frac{0^2}{\sqrt{0+1}} = 0 \Rightarrow (0,0) \text{ /x-intercept: } \frac{x^2}{\sqrt{x+1}} = 0 \Rightarrow x = 0 \Rightarrow (0,0). \text{ So there is only one intercept.}$

Asymptotes

Vertical Asymptote f is not defined at x = -1 but we know we need to check the limit to make sure that it is indeed the vertical asymptote. Since $\lim_{x \to 1^+} \frac{x^2}{\sqrt{x+1}} = \infty, x = -1 \text{ is a vertical asymptote.}$ Note that I only have to check one sided limit here as f is not defined on the

other side.

Horizontal Asymptote For the horizontal asymptote we need the limit at ∞

$$\lim_{x \to \infty} \frac{x^2}{\sqrt{x+1}} = \lim_{L'Hop} \lim_{x \to \infty} \frac{2x}{\frac{1}{2\sqrt{x+1}}} = \lim_{x \to \infty} x\sqrt{x+1} = \infty$$

So f has no horizontal asymptote.

Critical Values Find the derivative and determine where it is zero or undefined.

$$f'(x) = \frac{2x(\sqrt{x+1}) - x^2(\frac{1}{2\sqrt{x+1}})}{(\sqrt{x+1})^2} = \frac{3x^2 + 4x}{2(x+1)^{3/2}}$$

Now the critical values $f'(x) = 0 \Rightarrow 3x^2 + 4x = 0 \Rightarrow x(3x + 4) = 0 \Rightarrow$ x = 0 or $x = \frac{-4}{3}$. Since $x = -\frac{4}{3}$ is not in our domain we will exclude this one from out sign chart.

f'(x) due when x = -1 but then again this point is not in our domain.

2ndDerivative Resolve the concavity issue finding the second derivative

$$f''(x) = \frac{(6x+4)[2(x+1)^{3/2}] - (3x^2+4x)[3(x+1)^{1/2}]}{[2(x+1)^{3/2}]^2} = \frac{3x^2+8x+8}{4(x+1)^{5/2}}$$