$$F'(x) = \frac{2(x-1)(x+1)-(x-1)^2}{(x+1)^2} = \frac{(x-1)(x+3)}{(x+1)^2}$$
$$F'(x) = 0 \Rightarrow (x-1)(x+3) = 0 \Rightarrow x = 1 \text{ and } x = -3$$

Also the derivative confirms our previous observation F'(-1) is not defined. So the critical values are x = -3, -1, 1. To classify these points and where the function is decreasing $(\)$ or increasing $(\)$ I'll use a similar chart like the one in the previous example. The only difference between this sign chart's construction and the previous one is: I have double-vertical lines emanating from the critical value x = -1. This is to distinguish this critical value from the other two(-3 and 1), because this one makes my derivative not defined and other two make it equal to zero.

% [-] -[i	
F + + -	· \$)
Fars	્ય	7

So according to sign chart: F is \nearrow on the intervals $(-\infty, -3)$ and $(1, \infty)$. F is \searrow on the intervals (-3, -1) and (-1, 1). By using the First Derivative Test at x = -3 we have a local maximum and at x = 1 we have a local minimum

Here we have a rough sketch of F based on the information above.

