in the measurement of the diameter is $\Delta x = \pm 0.05$ cm, and the corresponding maximum error in the calculation of volume is

Maximum error in volume $= \Delta V \approx (V'(2.5))(\pm 0.05)$

Since

$$V'(x) = \frac{1}{6}\pi(3x^2) = \frac{1}{2}\pi x^2$$
 and $V'(2.5) \approx 9.817$

it follows that

Maximum error in volume $= (9.817)(\pm 0.05) \approx \pm 0.491$

Thus, at worst, the calculation of the volume as 8.181 cm^3 is off by 0.491 $cm^3,$ so the actual volume V must satisfy

$$7.690 \le V \le 8.672$$