Moreover $(1 + \frac{1}{2}x)^{-1} \approx 1 - \frac{1}{2}x$, (using $(1 + u)^{-1} \approx 1 - u$ with u = x/2). Hence;

$$\frac{e^{-2x}}{\sqrt{1+x}} \approx (1-2x)(1-\frac{1}{2}x) = 1 - 2x - \frac{1}{2}x + x^2$$

Now, we discard that last x^2 term, because we have already thrown out a number of other x^2 (and higher order) terms in making these approximations. Remember, were assuming that $|x| \ll 1$. This means that x^2 very small, x^3 even smaller, etc. We can ignore these higher-order terms, because they are very, very small. This yields

$$\frac{e^{-2x}}{\sqrt{1+x}} \approx 1 - 2x - \frac{1}{2}x = 1 - \frac{5}{2}x$$

You can now quickly read from this approximation f(0) = 1 and $f'(0) = \frac{-5}{2}$

Example Find the limit $\lim_{x\to 0} \frac{(1+2x)^{10}-1}{x}$ by approximating the quotient.

$$(1+2x)^{10} \approx 1+10(2x)$$
 (Use $(1+u)^r \approx 1+ru$ where $u = 2x$ and $r = 10$)

 \mathbf{So}

$$\frac{(1+2x)^{10}-1}{x} = \frac{1+20x-1}{x} = 20$$

Example Approximate the value of $e^{0.5}$.

We will use the list we have created above and use $e^x \approx 1 + x$. So $e^{0.5} \approx 1 + 0.5 = 1.5$

Example Approximate the value of $\sqrt{4.1}$

Let $f(x) = \sqrt{x}$ so that were attempting to approximate $f(4.1) = \sqrt{4.1}$. Notice that I know the value of f(x) and f'(x) at x = 4, and so I can solve for the equation of the line tangent to the graph of f(x) at x = 4. Specifically, since f(4) = 2 and $f'(4) = \frac{1}{4}$, the equation of the line tangent to f(x) at x = 4 is

$$y - 2 = \frac{1}{4}(x - 4)$$
 or $y = \frac{1}{4}(x - 4) + 2$

Now we use linearization: this tangent line is supposed to be a good approximation to f(x) near x = 4, and so we can estimate $\sqrt{4.1}$ by plugging 4.1 into the equation of the tangent line. This gives

$$\sqrt{4.1}\approx \frac{1}{4}(4.1-4)+2=2\frac{1}{40}$$