Section 2.5 Chain Rule

First we will start with couple of motivational examples:

Example Find $\frac{d}{dx}[(x^2+1)^2] = \frac{d}{dx}[(x^2+1)(x^2+1)]$. The second part of the problem is suggesting the use of the Product Rule.

$$\frac{d}{dx}[(x^2+1)^2] = \frac{d}{dx}[(x^2+1)(x^2+1)]$$

= (2x)(x^2+1) + (x^2+1)(2x)
= 2 \cdot (x^2+1) \cdot 2x

Example Find $\frac{d}{dx}[(x^2+1)^3] = \frac{d}{dx}[(x^2+1)(x^2+1)^2]$. Another call for Product Rule. We will also need the help of the previous example:

$$\frac{d}{dx}[(x^2+1)^3] = \frac{d}{dx}[(x^2+1)(x^2+1)^2]$$

= 2x(x^2+1)^2 + (x^2+1)[2 \cdot (x^2+1) \cdot 2x]
= 3 \cdot (x^2+1)^2 \cdot 2x

By similar argument as above,

 $\begin{aligned} \frac{d}{dx}[(x^2+1)^4] &= 4 \cdot (x^2+1)^3 \cdot 2x \\ \frac{d}{dx}[(x^2+1)^5] &= 5 \cdot (x^2+1)^4 \cdot 2x \\ \frac{d}{dx}[(x^2+1)^6] &= 6 \cdot (x^2+1)^5 \cdot 2x \end{aligned}$

Notice a pattern here? $\frac{d}{dx}[(x^2+1)^n] = n \cdot (x^2+1)^{n-1} \cdot 2x$. Here our original function $(x^2+1)^n = f \circ g(x)$ is composition of two functions where $f(u) = u^n$ is the "outer" function and $u(x) = x^2 + 1$ is the inner function. So we can re-interpret the pattern above as: $\frac{d}{dx}[(x^2+1)^n] = \underbrace{n \cdot (x^2+1)^{n-1}}_{\text{derivative of outer function at } u(x)} \cdot \underbrace{2x}_{\text{derivative of inner function}}$