We said $\lim_{x\to x_0} f(x) = L$ means if x is <u>near</u> x_0 then f(x) is <u>near</u> L.

In a way we are playing a 2-person game between you and I, in which I claim that the $\lim_{x\to x_0} f(x) = L$. You take the control of the y-axis and I (the defender) take charge of the x-axis. I ask:

Tell me what <u>near</u> means to you. So you will give me a constant ϵ

which will determine a distance criteria between f(x) and L and you declare $|f(x) - L| < \epsilon$ is near enough for you. Then it is my turn. My tactic is to choose a "nearness criterion" (δ) so that when x is close to x_0 according to my "nearness criterion", the corresponding f(x) is close to L according to your <u>near</u>. We play the game until one of the two things happens : either you run out of all possible your <u>near</u>'s you can think of (in which case I was able to find my "nearness criterion" every single time and hence prove the limit is L) or for one of your <u>near</u>'s I got stumped and was not able to find my "nearness criterion", hence you win and the function f does not have the limit L as x approaches x_0 .

In class I have also used the analogy of a soccer game. On the y-axis around the point L you set a net, and you get to set the "width" (ϵ) of this net. Right after you set your net, it is my turn. My job is to define a counter-width δ , that will help me to set an interval on the x-axis around x_0 . For me to win the game I have to choose the width (δ) of my interval so that when I put my ball on any point in this interval and shoot it towards the function, it reflects from f towards y-axis and gets into your net and hence I score. When I am able to do this for any width of your net, then the limit exists. If I fail, even for one of your choices, then it doesn't.

Below I will give the formal definition of limit. While reading the definition keep on the side of your mind the game above:

Definition: $\lim_{x\to x_0} f(x) = L$ means for every $\epsilon > 0$ we can find a $\delta > 0$ such that if $|x - x_0| < \delta$ then $|f(x) - L| < \epsilon$ Let's see two examples below: