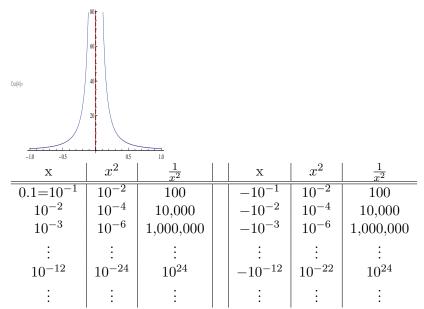
Informally $\lim_{x\to c} f(x) = \infty$ says that the function can be made arbitrarily large by making x sufficiently close to c. (or in the $-\infty$ case can be made arbitrarily small by making x sufficiently close to c.)

Definition The line x = c is called a vertical asymptote of the curve y = f(x) if at least one of the following is true.

$$\lim_{x \to c^-} f(x) = \infty \text{ or } \lim_{x \to c^-} f(x) = -\infty \text{ or } \lim_{x \to c^+} f(x) = \infty \text{ or } \lim_{x \to c^+} f(x) = -\infty$$

Example Find $\lim_{x\to 0} \frac{1}{x^2}$. Check out the graph and the table corresponding to function $f(x) = \frac{1}{x^2}$ when x is close to zero



So based on both, the graph and the table the function $\frac{1}{x^2}$ grows without a bound no matter from which direction you approach to zero (left or right), hence $\lim_{x\to 0^+} \frac{1}{x^2} = \infty$ and $\lim_{x\to 0^-} \frac{1}{x^2} = \infty$. So $\lim_{x\to 0} \frac{1}{x^2} = \infty$. Hence x = 0 is vertical asymptote for $f(x) = \frac{1}{x^2}$ by definition above.

Example Find $\lim_{x \to 1} \frac{-1}{|x-1|}$

Let's see how to get the graph of $\frac{-1}{|x-1|}$ starting with the graph of $\frac{1}{x}$ first. After all so far graphs have been our most helpful tool to find the limit.