exponential functions, log functions (on their domain), and the absolute value function are all continuous.

We can also put together two continuous functions and get continuous functions: the sum, difference, product, scaling, quotient, and composition of two continuous functions are all continuous on the domain of the resultant function!

Example Find $\lim_{x \to e^7/\pi} \sin(x)$?

Since $\sin(x)$ is continuous by definition of continuity, $\lim_{x \to e^7/\pi} \sin(x) = \sin(e^7/\pi)$

Since continuity is defined as a limit, the limit laws have a direct correlation to continuous functions.

Theorem If f and g are continuous at x=a and c is a constant, then the following are also continuous at x=a

- 1) $f \pm g$
- $2) \ cf$
- 3) $(f \cdot g)$
- 4) If $g(a) \neq 0 \frac{f}{g}$

Example Where is $f(x) = \frac{\ln x + tan^{-1}(x)}{x^2 - 1}$ continuous?

Divide and conquer: $\ln(x)$ is continuous on its domain $(0, \infty)$ and $\tan^{-1}(x)$ is continuous on all of \Re . Like wise $x^2 - 1$. By the property (1) above the numerator $\ln(x) + \tan^{-}(x)$ continuous on $(0, \infty)$. By Property (4) f(x) is continuous on $(0, \infty)$ where $x^2 - 1 \neq 0$. Hence f(x) is continuous on $(0, 1) \cup (1, \infty)$

Theorem If f is continuous at b and $\lim_{x\to a} g(x) = b$, then $\lim_{x\to a} f(g(x)) = g(b)$. In other words;

$$\lim_{x \to a} f(g(x)) = f(\lim_{x \to a} g(x))$$