LIMITS

Intuitive Definition For a function f(x), the limit of f as x approaches a, written $\lim_{x\to a} f(x)$ is the quantity that outputs are approaching as inputs approach to a.

In other words, $\lim_{x\to a} f(x)$ is where it looks like a graph of f(x) is heading as x approaches a.

Example Consider the graph of f(x) below. What is the $\lim_{x\to 2} f(x)$?

As input approach 2, outputs are approaching 9. Hence $\lim_{x\to 2} f(x) = 9$

Example Consider the function g(x) below. What is $\lim_{x\to 2} g(x)$?

The function g(x) is the same as f(x) except at x = 2, where g(x) = 3. Notice, however, that in evaluating the limit we only care about where the function seems to be going as $x \to 2$, and not about the value of the function at 2. Hence we still have $\lim_{x\to 2} g(x) = 9$