1-1 on this interval hence invertible. The inverse cosine function  $\cos^{-1}$  or arccos is defined as:

$$y = \cos^{-1} x$$
 iff  $\cos y = x$  and  $0 \le y \le \pi$ 

So  $\cos^{-1} x$  has domain [-1, 1] and range  $[0, \pi]$ . The below graph shows the process of reflecting the graph of  $y = \cos x$  about the y = x line.



We need to find the angle  $0 \le \theta \le \pi$  where  $\cos \theta = \frac{-\sqrt{2}}{2}$ . Since cosine of our angle is negative we expect our angle to be in the 2nd quadrant hence  $\theta = 3\pi/4$  or  $\arccos(\frac{-\sqrt{2}}{2}) = 3\pi/4$ .

**Example** Find the inverse of  $y = \tan x$ . As in the cases of sine and cosine we need to restrict the domain of tangent to find its inverse. And we will restrict the domain of  $\tan x$  to the interval  $(-\pi/2, \pi/2)$  where it is 1-1. Range of  $\tan x$  on this domain is all  $\Re$ . The inverse of tangent function  $\tan^{-1}$  or arctan is defined just like in the cases of sine and cosine. Domain