
12/23/2020

3

Some Expressions Cannot Be Made Equivalent

Other equivalences cannot be made
consistent if overloading is used to
substantially change some operators.

For example, pointer dereference:
◦inst->member
◦(*inst).member
◦inst[0].member

The latter two expressions use “.”,
which cannot be overloaded.

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Assignment Requires First Destroying the Old Instance

Similarly, given
ALPHA a;

the following are not equivalent:
ALPHA b = a; // copy constructor
b = a; // operator= (assignment)

For a new variable, the first version is better:
◦ work may be required to destroy b
◦ (for example, removing b from a sorted list
or a binary search tree).

◦ before copying the new value from a.

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Copy Constructor and Assignment not Equivalent in C++

Note that
◦ the copy constructor and
◦assignment (operator=)
◦are not equivalent in C++.

The default versions are the same (copy
constructor detailed in earlier slides), but
◦ overriding one does NOT override the other,
◦which continues to use the default version
◦and compilers will NOT warn you.

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Treating Instances as C Variables Generates Useless Work

One last topic: variable declarations and
single-assignment.

C++ instances are “always” valid:
◦ constructed when they are declared, and
◦destructed when they leave scope
(and can no longer be accessed).

Treating them as C variables generates
useless work by forcing initialization before
information for initialization is available.

© 2018 Steven S. Lumetta. All rights reserved. slide 12ECE 220: Computer Systems & Programming

9 10

11 12

