12/23/2020

Matching Happens on a Per-Argument Basis

Pitfall: Overloading too Finely Can Confuse Users

How does a compiler choose?
The basic rule:
opick the “most derived” class
ofor each argument.
The result is not always unique,
as you already know.

Compilers report errors
if the results are ambiguous.

Exact rules exist, but don’t seem to be widely
known, understood, portable, and so forth.*

My advice: as with precedence,
°if you don’t know the answer,
odon’t try to look it up:

e instead, avoid using it.

Matching overloaded calls is much more
dangerous—one can ‘steal’ calls from existing code
by creating new functions that provide better
matches.
*See ECE409 notes L7P5-6 for more detailed comments,
or the C++ ARM or standards for a definitive version.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 5

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 6

Some Operators Cannot be Overloaded

C Equivalences May Not Be Valid in C++

C++ allows most, but not all,
operators to be overloaded.

Operators that cannot be overloaded

include
°emember access (“.”),

o pointer to member function
invocation (“. *”),

o conditional expressions (“? :”), and

> scope identification (“: ;7).

In C++, C’s equivalences may
no longer hold.

For example, pointer-like and array-like
objects are not necessarily the same
carray[10] (calls operator[])

°may not be the same as

°o* (array + 10)
(calls operator+ and operator¥).

These operators can be defined to be
consistent, however.

ECE 220: Computer Systems & Programming ©2018-2020 Steven S. Lumetta. All rights reserved. slide 7

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 8






