
12/23/2020

2

Overloading Support Operators with User-Defined Types

Overloading also extends to operators:
◦most operators can be redefined in ways
◦ specific to the types of their operands.

In fact,
◦ “natural” use of operators with
user-defined types

◦was the original goal of overloading.
◦Overloading is necessary to make
operator redefinition useful.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Example of Code Simplification with Operator Overloading

The canonical motivating example for
operator overloading is complex numbers.
Consider this task:
◦ given complex numbers P and Q,
◦ calculate R = P2 + Q2.

Looks nice in math notation, right? Here’s C:
R = complex_add

(complex_multiply (P, P),
complex_multiply (Q, Q));

And here’s C++:
R = P * P + Q * Q;

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Overloading Integrates Naturally with Auto-Conversion

Redefining operators should also
◦ fit in with the “natural” conversions
◦ among int, float, double, and so forth.

For example, one should not have to define all
of these multiplication operators separately:
◦ complex * int
◦ complex * double
◦ int * complex
◦ double * complex
◦ and so on…

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

C++ Combines Implicit Casts with Symmetric Definitions

To simplify the definitions, C++
◦allows creation of new implicit
casts (auto-conversions)

◦and uses friend functions for symmetry.

A friend function is
◦a function outside of a class (neither a
member function nor a class function)

◦with full access rights to the class
◦ (which, of course, must appear as
a friend in the class definition).

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

5 6

7 8

