
4/26/2018

2

new Also Used to Allocate Arrays

To allocate an array, write

MyClass* m = new MyClass[42];

The number of elements is an arbitrary
expression.

The constructor with no arguments
◦ (which must exist)
◦ is used to construct each element.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Remember What Type of Allocation is Used

As with C, the programmer is responsible for
deallocating all dynamically-allocated instances.

In C++, the programmer must also remember
◦ whether each allocation was an instance
◦ or an array.

There are two kinds of deallocation.
◦ If you choose the wrong one,
◦ good luck finding the bug.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Use delete to Deallocate Instances, delete[] for Arrays

Given MyClass* m,
◦delete m; // deletes an instance
◦delete[] m; // deletes an array

Before the memory is freed, destructors
(with no arguments) are called on all
instances.
As with modern C,
◦deleting NULL has no effect, but
◦deleting a “pointer” of uninitialized
bits is problematic.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

Initialization Rules Can Be Convoluted

Did you notice that I said that parentheses had to be
omitted to get the constructor with no arguments?

In certain cases, C++ applies “value-initialization:”
int32_t i{};
int32_t i = int32_t (); // avoid
MyClass* m = new MyClass ();
// iff default no args constructor
// is available; user-def’d is called

Value-initialization zeroes all non-instance fields, then
calls constructors for base classes and instance fields.

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

