12/22/2020

Order of Initializer Execution Depends on Class Definition

Order of initializers does not affect code,
but should match order of execution:
1. Base class(es), in order of derivation list:
o if a class does not appear in the list,
o constructor with no arguments is called.

2. Fields, in order listed in class definition
o if a field that is an instance does not
appear in the list,

o constructor with no arguments is called.

Use Initializers, Not Code, to Initialize Instances

Initializers are executed
BEFORE the constructor’s code.
Thus, when constructor code starts,
call base classes have been initialized
o all fields that are instances
have been initialized
Avoid re-initializing instances!

If code is needed to initialize a field, make
the field a pointer and dynamically allocate
an instance after the necessary code.

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 13

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 14

13

14

Destructor is Usually Called for an Instance

A destructor is a subroutine
ocalled to destroy (teardown) an instance,
cand is usually called for instances.

When is a destructor called?
Automatic variables: at end of scope / use

Static variables: after main
(order is difficult to control)

Dynamic variables: at point of deallocation

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 15

Destructors Not Called in Certain Cases

When is a destructor not called?

Abnormal/unusual program termination,
osuch as crashes (for example, due to SEGV
signals or division by zero) and

ocalls to exit.

Dynamically allocated instances that are
not deallocated (deleted).*

*Bad habits (not freeing things) in C can be dangerous in C++.

15

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved. slide 16

16





