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Order of Initializer Execution Depends on Class Definition

Order of initializers does not affect code, 
but should match order of execution:

1. Base class(es), in order of derivation list:
◦ if a class does not appear in the list,
◦ constructor with no arguments is called.

2. Fields, in order listed in class definition
◦ if a field that is an instance does not 

appear in the list,
◦ constructor with no arguments is called.
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Use Initializers, Not Code, to Initialize Instances

Initializers are executed 
BEFORE the constructor’s code.

Thus, when constructor code starts,
◦all base classes have been initialized
◦all fields that are instances
have been initialized

Avoid re-initializing instances!
If code is needed to initialize a field, make 
the field a pointer and dynamically allocate 
an instance after the necessary code.
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Destructor is Usually Called for an Instance

A destructor is a subroutine 
◦ called to destroy (teardown) an instance,
◦and is usually called for instances.

When is a destructor called?

Automatic variables: at end of scope / use

Static variables: after main
(order is difficult to control)

Dynamic variables: at point of deallocation
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Destructors Not Called in Certain Cases

When is a destructor not called?
Abnormal/unusual program termination,
◦ such as crashes (for example, due to SEGV 
signals or division by zero) and

◦ calls to exit. 

Dynamically allocated instances that are 
not deallocated (deleted).*

*Bad habits (not freeing things) in C can be dangerous in C++.
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