
12/22/2020

4

Order of Initializer Execution Depends on Class Definition

Order of initializers does not affect code,
but should match order of execution:

1. Base class(es), in order of derivation list:
◦ if a class does not appear in the list,
◦ constructor with no arguments is called.

2. Fields, in order listed in class definition
◦ if a field that is an instance does not

appear in the list,
◦ constructor with no arguments is called.

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

Use Initializers, Not Code, to Initialize Instances

Initializers are executed
BEFORE the constructor’s code.

Thus, when constructor code starts,
◦all base classes have been initialized
◦all fields that are instances
have been initialized

Avoid re-initializing instances!
If code is needed to initialize a field, make
the field a pointer and dynamically allocate
an instance after the necessary code.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

Destructor is Usually Called for an Instance

A destructor is a subroutine
◦ called to destroy (teardown) an instance,
◦and is usually called for instances.

When is a destructor called?

Automatic variables: at end of scope / use

Static variables: after main
(order is difficult to control)

Dynamic variables: at point of deallocation

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

Destructors Not Called in Certain Cases

When is a destructor not called?
Abnormal/unusual program termination,
◦ such as crashes (for example, due to SEGV
signals or division by zero) and

◦ calls to exit.

Dynamically allocated instances that are
not deallocated (deleted).*

*Bad habits (not freeing things) in C can be dangerous in C++.

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

13 14

15 16

