
12/22/2020

5

Class Fields Look Exactly Like struct Fields

Fields are exactly the same as in a struct.

Add lines that look like variable declarations
int32_t x;
double y;
player_t* p;

and each instance has fields named x, y, and p.

Order in memory is order of declaration.

Fields come after fields from parent class
(as with best practice for subtypes in C).

© 2018 Steven S. Lumetta. All rights reserved. slide 17ECE 220: Computer Systems & Programming

Class Variables Prefixed with static

To declare the existence of a static variable
◦ called a class variable—one for the class,
not one per instance,

◦ prefix the declaration in the class definition
with static:

static int32_t classInt;
static double classDouble;
static player_t* classPlayer;

These variables reside in
the global data area.

© 2018 Steven S. Lumetta. All rights reserved. slide 18ECE 220: Computer Systems & Programming

Declaration in Class Definition is Not Sufficient

static int32_t classInt;

The line above
◦declares the existence of classInt,
◦but does not create storage,
◦ so classInt cannot be initialized
in the class definition.

Static variables must also be declared
outside of the class definition.

© 2018 Steven S. Lumetta. All rights reserved. slide 19ECE 220: Computer Systems & Programming

Declare Class Variables in a Source File as Well

static int32_t classInt;

Outside of MyClass’ definition, the variable
above is called MyClass::classInt.+

It must be declared exactly once
◦outside of the class definition
◦ (so not in a header file)
◦and can be initialized there.

+ :: is a new operator.

© 2018 Steven S. Lumetta. All rights reserved. slide 20ECE 220: Computer Systems & Programming

17 18

19 20

