
12/21/2020

7

Instead, Use One Table of Function Pointers per Type

What if, instead,
◦ for each type
◦we create a table (a struct+)

◦ filled with function pointers?

We only need one such table per type,
NOT one table per variable.

And one pointer per variable—to the
variable’s type’s table of function pointers.
+An array of pointers, but the functions have different signatures.

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Virtual Function Table Pointer Refers to Table for Type

Let’s call the table pointer vtab.+

And place it at the start of the structure,
so that we can always find it.

Every book’s vtab points
to the table for books.

Every reference’s vtab
points to the table for
references.

+For “virtual function table.”

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

book_t

vtab

Calling a Virtual Function Requires Two Memory Reads

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

book_t

vtab

reference_t

vtab

book_t

vtab
book_t table

reference_t table

print_book_citation

print_ref_citation

A Virtual Function Call Costs Extra Memory Reads

Two loads followed by a call (JSRR, for
example), instead of just a call.

That’s the more significant cost.
You may want to try converting our
bibliography printing code into LC-3
assuming that vtab is at the start of each
structure (before the double_list_t).
Choose some non-zero index for
print_citation in the table to make it
interesting (the index must be a constant,
of course).

© 2018 Steven S. Lumetta. All rights reserved. slide 28

25 26

27 28

