
12/21/2020

11

Call the
callback function.

Take action based on callback’s response.

Loop over all things.

for (dl = head->next; head != dl;
dl = dl->next) {

result = (*func) (dl, arg);

switch (result) {

For Every “Thing,” Call the Callback and Take Action

© 2018-2020 Steven S. Lumetta. All rights reserved. slide 41ECE 220: Computer Systems & Programming

Remove the “thing”…

This case returns “thing” without removing.

switch (result) {

case DL_REMOVE_AND_STOP:
dl_remove (dl);

case DL_STOP_AND_RETURN:
return dl;

Cases to Return “Thing” After Possibly Removing It

© 2018-2020 Steven S. Lumetta. All rights reserved. slide 42ECE 220: Computer Systems & Programming

… and return it!
(no break)

Copy “thing”
to remove.

Loop update reads
this element’s next.

case DL_REMOVE_AND_CONTINUE:
case DL_FREE_AND_CONTINUE:

remove = dl;
dl = dl->prev;
dl_remove (remove);
if (DL_FREE_AND_CONTINUE ==

result) {
free (remove);

}
break;

Cases to Remove “Thing” and Continue (Maybe Freeing)

© 2018 Steven S. Lumetta. All rights reserved. slide 43ECE 220: Computer Systems & Programming

If requested, free “thing” (other
data can be freed by callback).

Remove
“thing”

from list.

case DL_REMOVE_AND_CONTINUE:
case DL_FREE_AND_CONTINUE:

remove = dl;
dl = dl->prev;
dl_remove (remove);
if (DL_FREE_AND_CONTINUE ==

result) {
free (remove);

}
break;

Cases to Remove “Thing” and Continue (Maybe Freeing)

© 2018 Steven S. Lumetta. All rights reserved. slide 44ECE 220: Computer Systems & Programming

41 42

43 44

