
4/9/2018

6

Returns new tree or NULL.

file name

input stream

new pyramid tree

number of nodes in file

Read and Build a Pyramid Tree from a File

Now, let’s reconstruct a pyramid tree
from a binary file.
pyr_tree_t* read_pyr_tree_binary

(const char* fname)
{

FILE* in;
pyr_tree_t* p;
int32_t count;

© 2018 Steven S. Lumetta. All rights reserved. slide 21ECE 220: Computer Systems & Programming

If file open succeeds, read
number of nodes in file.

Open file
for reading.

Open File for Reading, Then Read Number of Nodes

if (NULL == (in =
fopen (fname, "r")) ||

1 != fread (&count,
sizeof (count), 1, in)) {

if (NULL != in) {
fclose (in);

}
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 22ECE 220: Computer Systems & Programming

If either fails, try to
close stream, then

return failure.

On Failure, Try to Close Stream, Then Return Failure

if (NULL == (in =
fopen (fname, "r")) ||

1 != fread (&count,
sizeof (count), 1, in)) {

if (NULL != in) {
fclose (in);

}
return 0;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 23ECE 220: Computer Systems & Programming

Allocate space for pyramid tree.

Allocate space for
node array.

Allocate Space for Pyramid Tree and Node Array

if (NULL ==
(p = malloc (sizeof (*p))) ||
NULL == (p->node = malloc
(count * sizeof (p->node[0])))) {
if (NULL != p) { free (p); }
fclose (in);
return NULL;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 24ECE 220: Computer Systems & Programming

