
4/2/2018

8

Final Routine is Identical to free

The last routine behaves identically to free:

void mem220_free (void* ptr);

Note that blocks from C’s library API are not
interchangeable with blocks from our API.

Blocks allocated with our routines must
be freed with mem220_free.

© 2018 Steven S. Lumetta. All rights reserved. slide 29ECE 220: Computer Systems & Programming

When Does Non-Trivial Initialization Occur?

Remember our file-scope variables?
static uint8_t* free_bytes;

static size_t n_free_bytes;

static mem_block_t*
mem_bin[MEM220_MAX_ALLOC_LOG+1];

You may have noticed that
they are not initialized.

When does initialization take place?

And how do we cause it to happen?

© 2018 Steven S. Lumetta. All rights reserved. slide 30ECE 220: Computer Systems & Programming

When Can Non-Trivial Initialization Occur?

What are the options?
1. static initialization

(static int x = 42;) —
not a solution for our problem

2. a new API call
(int32_t mem220_init (void);) —
requires that other code call it first

3. compiler/language/Makefile support
(available in C++) — only last available in C,
and not always easy to use anyway

4. on first API call (check in every call) —
requires extra work for every call

© 2018 Steven S. Lumetta. All rights reserved. slide 31ECE 220: Computer Systems & Programming

Which API Calls Can Be Made First?

Which can the user call first?
mem220_allocate
mem220_allocate_and_zero
mem220_reallocate
mem220_free

But
◦ mem220_allocate_and_zero and
mem220_reallocate

◦ call mem220_allocate!
So only one call need be checked…

© 2018 Steven S. Lumetta. All rights reserved. slide 32ECE 220: Computer Systems & Programming

