
4/2/2018

7

Second Routine Replaces calloc

The next routine replaces calloc.
In new code,
◦ there’s less benefit*
◦ to matching the original signature,
◦ so instead we have:
void* mem220_allocate_and_zero

(size_t n_bytes);
The routine tries to allocate and zero a block,
returning a pointer to the block or NULL.

*Using distinct parameter lists may help
to catch some programmer mistakes.

© 2018 Steven S. Lumetta. All rights reserved. slide 25ECE 220: Computer Systems & Programming

Third Routine Replaces realloc

The third interface replaces realloc:
int32_t mem220_reallocate

(void** ptr_to_ptr,
size_t n_bytes);

The routine works similarly to realloc:
◦ given a pointer to a pointer to an old block*
◦ and given a new size
◦ the routine tries to change the block’s size,
◦ copying and freeing the old block as
necessary.

*Sadly, an explicit cast to (void**) is now required.

© 2018 Steven S. Lumetta. All rights reserved. slide 26ECE 220: Computer Systems & Programming

Third Routine Avoids realloc Misuse Case

Also, the new version avoids the common
misuse case for realloc:

int32_t mem220_reallocate
(void** ptr_to_ptr,
size_t n_bytes);

*ptr_to_ptr changes
◦only on success, and
◦ only when the block had to move.

The function returns 0 on success,
or -1 on failure.

© 2018 Steven S. Lumetta. All rights reserved. slide 27ECE 220: Computer Systems & Programming

Example of a Value-Result Argument

int32_t mem220_reallocate
(void** ptr_to_ptr,
size_t n_bytes);

Arguments such as ptr_to_ptr, that both
◦convey a value to the function and
◦convey an output back to the caller
◦are sometimes called value-result
arguments.

© 2018 Steven S. Lumetta. All rights reserved. slide 28ECE 220: Computer Systems & Programming

