
4/2/2018

4

Recall Dynamic Resizing’s Approach to Array Sizes

Think back to dynamic resizing:
◦we double our array
◦ each time we need more.

When we examined waste space,
◦we found that doing so
◦gave us a pretty good fit
◦ (average 38% waste).

© 2018 Steven S. Lumetta. All rights reserved. slide 13ECE 220: Computer Systems & Programming

We Build a Best-Fit Logarithmic Allocator

Let’s use the same idea for allocation:
◦ allocate the smallest power of 2 bytes
◦ into which the desired block fits.

This approach is called a
best-fit logarithmic allocator.

We might allow blocks to be split (into
two smaller blocks) and re-combined.
◦ For example, see the page allocation
management in the Linux kernel (in ECE391).

◦ Our implementation does neither.

© 2018 Steven S. Lumetta. All rights reserved. slide 14ECE 220: Computer Systems & Programming

A Linked List Holds Free Blocks of Each Size

Let’s talk about data structures.

Free blocks
are kept in
linked lists
based on the
size of the
blocks, as
shown to the
right.

© 2018 Steven S. Lumetta. All rights reserved. slide 15ECE 220: Computer Systems & Programming

size
512k
list

size
32
list

size
64
list

size
128
list

size
1M
list

. . .

Allocate New Blocks as Necessary (As Done Earlier)

When we need a block, we look in the list.

For example,
if we want 100
bytes, we look
in the size 128
list.

If list is empty,
we allocate a
new block (as before).

© 2018 Steven S. Lumetta. All rights reserved. slide 16ECE 220: Computer Systems & Programming

size
512k
list

size
32
list

size
64
list

size
128
list

size
1M
list

. . .

