4/2/2018

void* mem220_ allocate (size_t n_bytes)
{

void* new_block = free bytes;

free bytes += n_bytes;
n_free bytes -= n_bytes;
return new_block;

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 9

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free bytes;

if (n_free bytes < n_bytes) {
return NULL;

What about alignment?

In our next implementation,
> all blocks will be 2% bytes for some integer k

> and the smallest will be 32 bytes
(on the lab machines),

°s0 all blocks will maintain malloc’s
alignment (typically 16-byte).
To align, round up, then squash the low bits
oX=X+15) & -16
o X=X+ 15) " (X + 15) & 15) // safer

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 10

ECE 220: Computer Systems & Programming ©2018 Steven S. Lumetta. All rights reserved.

slide 11

How should we manage allocated blocks?

Without binning block sizes in some way,
cfragmentation effects can become bad,
o especially when coupled with alignment.
> Have you ever played “continuous Tetris?”

Allowing arbitrary addresses also makes

tracking blocks more difficult (and
pointers have alignment requirements, too).

ECE 120: Introduction to Computing ©2016 Steven S. Lumetta. All rights reserved.

slide 12






