
4/2/2018

3

Do we have enough free memory?

Check Whether Available Memory is Sufficient

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 9ECE 220: Computer Systems & Programming

Remove
the

block from
free

memory.
And return the new block.

Remove the Block from Free Memory and Return It

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 10ECE 220: Computer Systems & Programming

Should Add Alignment or Round Up Block Sizes

What about alignment?

In our next implementation,
◦ all blocks will be 2k bytes for some integer k
◦ and the smallest will be 32 bytes
(on the lab machines),

◦ so all blocks will maintain malloc’s
alignment (typically 16-byte).

To align, round up, then squash the low bits
◦ X = (X + 15) & -16
◦ X = (X + 15) ^ ((X + 15) & 15) // safer

© 2018 Steven S. Lumetta. All rights reserved. slide 11ECE 220: Computer Systems & Programming

Want to Bin Block Sizes and Make Tracking Easy

How should we manage allocated blocks?

Without binning block sizes in some way,
◦ fragmentation effects can become bad,
◦ especially when coupled with alignment.
◦Have you ever played “continuous Tetris?”

Allowing arbitrary addresses also makes
tracking blocks more difficult (and
pointers have alignment requirements, too).

ECE 120: Introduction to Computing © 2016 Steven S. Lumetta. All rights reserved. slide 12

