
4/2/2018

2

Let’s Write a Best-Fit Logarithmic Allocator

Let’s implement dynamic allocation!

We’ll start simple: no reclamation.

Then we’ll write
◦a best-fit logarithmic allocator,
◦which was common for a couple of decades.

© 2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

For Simplicity, We Build on Top of malloc

To avoid overriding the C library,
◦ we use malloc instead of sbrk
◦ to get a big chunk of memory to manage,
◦ and store the chunk in file-scope variables.

In particular,
static uint8_t* free_bytes;

static size_t n_free_bytes;

The free memory consists of n_free_bytes
bytes starting at address free_bytes.

© 2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

First Step: Carving Off a Block

How do we allocate a new block?

If we don’t care about reclamation
◦ (reusing blocks that are freed),
◦ carving off a block is straightforward.

We’ll write a function for doing so:

void* mem220_allocate
(size_t n_bytes);

The behavior is identical to that of malloc.

© 2018 Steven S. Lumetta. All rights reserved. slide 7ECE 220: Computer Systems & Programming

New block starts at start of free memory.

An Overly Simple Allocation Routine

void* mem220_allocate (size_t n_bytes)
{

void* new_block = free_bytes;
if (n_free_bytes < n_bytes) {

return NULL;
}
free_bytes += n_bytes;
n_free_bytes -= n_bytes;
return new_block;

}

© 2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

