
4/2/2018

2

Write a Recursive Function to Flatten a Tree

Let’s write a function to flatten such a tree
◦ into an array of integers.
◦ For NULL subtrees, we use the symbolic
constant ABSENT.
int32_t pack_tree (int32_t ar[],

int32_t len, int32_t pos,
node_t* root);

pos is the current writing position (starts at 0)

The function returns the final length written or
-1 on failure (array too short to fit the tree).

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 5ECE 220: Computer Systems & Programming

Enough space
to write
ABSENT?

Add ABSENT
to end of array.

Indicate that another space has been used.

Stopping Condition: Reached an Empty Subtree

We’ll write the function recursively.
First, we check for NULL:
if (NULL == root) {

if (len <= pos) {
return -1;

}
ar[pos] = ABSENT;
return (pos + 1);

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 6ECE 220: Computer Systems & Programming

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->mid)) ||
-1 == (pos = pack_tree

(ar, len, pos, root->right))) {
return -1;

}

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 7

This code is a little tricky.

First, the leap of faith:
pack_tree writes a tree into an array.

It works.
We haven’t finished writing it yet.

But we have to assume that it works.
If it fails, it returns -1.

ECE 220: Computer Systems & Programming

Pass current
array position

for writing.

Return value gives
the new array

position for writing.

Check for failure. On failure, logical OR
stops evaluating!

Pack the Three Subtrees Recursively

Next, we write the three subtrees recursively.
On failure, we also fail.
if (-1 == (pos = pack_tree

(ar, len, pos, root->left)) ||

© 2016-2018 Steven S. Lumetta. All rights reserved. slide 8ECE 220: Computer Systems & Programming

